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Abstract—Supply chains are characterized by multiple firms providing their resources and processes to meeting 

customer demand in an efficient manner. There exists a great variety of approaches for solving the inherent coordination 
problem. It has been acknowledged that the autonomy of supply chain participants – and their business objectives – as well 
as the contractual relations between participants have to be maintained when designing a coordination mechanism. Often, 
new mechanisms are triggered by innovation in the software industry. This paper adopts the basic idea of Cloud Computing 
and takes a Cloud perspective on supply chain systems: It proposes to represent supply chains as a set of service offerings 
and customer demand as service requests; coordination is then a problem of determining optimal service compositions. We 
evaluate our proposal in a case study of airport service supply chains. 
 

I. INTRODUCTION 

N many industries, supply chains are challenged by their increasing complexity and the need for higher flexibility 
to meeting individual customer requirements (e.g., automotive, electronics, engineering, construction) [1] [2]. 
Where suppliers or customers on one hand break away (supply chain disintegration, disintermediation), on the other 

hand new partners offering value-added services for OEMs and customers need to be integrated. Business relations 
change as well: from long-term contracts (static supply chain systems) to small short-term contracts and even to event-
driven management for dynamically creating and delivering individualized products. 

At the same time, recent developments in software technology address a very similar problem in computing: How 
to fulfill individual and complex user requirements by effectively and efficiently using distributed resources? This 
question has led to the idea of Cloud Computing [3]. A Cloud is basically a pool of shared resources. Users do not 
need to have detailed knowledge about available resources and their properties, but search for services, consume 
resources as a service, and then pay only for the services used. A middleware provides respective functionality for 
matching demand and supply. 

The objective of our research is to develop a new approach for supply chain coordination by adopting the idea of 
Cloud Computing: We analyze supply chain systems from the perspective of Cloud Computing and thus propose 
‘Supply Chain as a Service’ (SCaaS). Unlike computational Clouds, we represent supply chain operations such as 
transportation, warehousing etc. as software-based services. Thus we do not represent supply chain IT functionality 
such as tour planning, but use the Cloud idea for a new class of software-based services. The designation SCaaS must 
be understood as a metaphor for giving access to operations within a supply chain by means of standardized electronic 
interfaces. 

The approach consists of two main elements: (1) representation means for supply chain operations and (2) 
coordination means for supply chain services. We evaluate the proposal by reporting about experiences made in 
adopting and implementing its elements. The use case concerns a supply chain of ground handling operations at 
airports. 

The rest of the paper is organized as follows. Section 2 introduces the Cloud perspective on supply chain systems. 
Section 3 proposes a model for describing supply chain services. Section 4 extends this model for coordination of 
supply chain services. In section 5, we provide a preliminary evaluation and discussion. Section 6 discusses related 
work. Finally, we draw conclusions and outline avenues of future research. 
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II. CLOUD PERSPECTIVE 

In this section, we introduce the basic concepts of Cloud Computing and map these to supply chain systems. 

A. Cloud Definition 

The term Cloud Computing emerged in 2007. It describes a concept for the provision of resources. By virtualization, 
resources can be easily used in the form of services. Service providers make their services available to service users 
by Internet-based interfaces. Depending on the resource type and the provided capability, the Cloud concept enables 
three scenarios: (1) Infrastructure as a service (IaaS), describing pure computation resources such as storing and 
processing capacity, (2) platform as a service (PaaS), describing software platforms, i.e., machines with an operation 
system, and (3) software as a service (SaaS), describing software applications that run in the Cloud. 

The concept has attracted a lot of attention, driven by early commercial implementations such as Amazon Elastic 
Computing Cloud (EC2) and Google App Engine. There still exists no commonly accepted and solid definition for 
Cloud. Because it describes a complex idea, it is associated with a variety of similar technologies such as Grid 
Computing and Service-oriented Computing (SOC). In addition, the recent hype has made it difficult to identify its 
key and distinguishing features. In the following, we ground the Cloud perspective on the definition proposed by 
Vaquero et al. [4], who analyzed twenty-two definitions. This definition shows how the concept is perceived today. 

Definition 1 (Cloud): A Cloud is “a large pool of easily usable and accessible virtualized resources (such as 
hardware, development platforms and/or services). These resources can be dynamically reconfigured to adjust a 
variable load (scale), allowing also for an optimum resource utilization. This pool of resources is typically exploited 
by a pay-per-use model in which guarantees are offered by the Infrastructure Provider by means of customized Service 
Level Agreements (SLA)” [4]. 

B. Rationale for Supply Chain Systems 

Describing supply chain systems through the lens of Cloud Computing, we first need to define resource type: Supply 
chain systems are constituted by resources that are involved in delivering goods (and services) from a supplier/source 
to a customer [5]. Computational resources are used in conjunction to enable and facilitate dynamics and flexibility 
of supply chain systems. These resources span a wide range, e.g., including manufacturing sites, warehouses, 
transportation vehicles, employees, and their properties and interrelations. Following the Cloud concept, this variety 
and complexity, however, can be greatly reduced by virtualization: It hides the heterogeneity of the underlying 
resources by a predefined interface. 

The interface is used for accessing a service without determining a concrete resource instance to be used. In other 
words, a service represents the capability of a resource type for which typically more than one resource is available. 
Since we add a new type of services which does not exist in Cloud Computing, this scenario can be adequately 
denominated as Supply Chain as a Service (SCaaS). 

Cloud Computing assumes a large set of resources of the same resource type; the ultimate objective is to fulfill all 
user demand, i.e., service requests, while at the same time maximizing utilization across resources. In supply chain 
systems, this is similar to a key objective of supply chain management (SCM): lowering the costs required to provide 
the necessary level of customer service to a specific segment [6]. The ‘large set’ property emphasizes the existence of 
alternatives for delivering a requested service (e.g., choosing the cheapest resource). In supply chain systems, the 
picture is very much the same for commodities; though other elements of a supply chain system may not be easily (or 
not at all) replaced due to nonexistence, exclusion of competition, or other restrictions. 

Reconfiguration is the process of adding, removing, or modifying resources depending on the customer demand. It 
is closely associated with scalability; the Cloud is a dynamic set of resources depending on the current and forecasted 
load. Supply chain systems also rely on scalability, e.g., by contracting new suppliers to meet unexpected demand or 
shifting jobs due to resource failures. Scalability is, however, lower compared to computing. For instance, constraints 
increase the time required for reconfiguration (e.g., physical distances, technical and organizational interfaces). 
Scalability of SCaaS is enabled by outsourcing supply chain functions via information systems; the underlying theory 
is transaction cost economics and its impact on interorganizational coordination [7]. These effects hold also for Web 
services computing and provide respective opportunities for supply chain systems. 

The pay-per-use model is made possible by the transformation of computing into a utility, such as water, power, 
and transportation. Such services can easily be metered and thus charged based on actual consumption. The Cloud did 
not first introduce this concept, but incorporated the utility computing model [8]. Its adoption to supply chain systems 
depends largely on the commodity property of services. Commoditization describes a situation in which competitors 
offer increasingly homogenous goods or services to price-sensitive customers. It is being observed in many industries 
[9] and a driver for outsourcing business processes [10]. Commoditization helps turning fixed costs into variable costs, 
but may also erode the competitive differentiation of firms [11]. From this perspective, Cloud Computing can be seen 
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as a technology for materializing commoditization into electronic business processes. Evaluating its potential, 
however, has to consider the organizational setting and cultural determinants, which are out of the scope of this work. 

With regard to its organization, a Cloud typically distinguishes two roles, Infrastructure Provider (IP) and Service 
Provider (SP). Whereas the IP provides the actual resources, the SP delivers services using such resources. Ideally, 
the two roles are fulfilled by different organizations; thus the SP can concentrate its efforts on services without catering 
for all implementation issues. Therefore, only the SP interacts with users. The obligations and guarantees regarding 
services in the business relationship between IP and SP are defined explicitly in an SLA [12]. An important language 
for formally specifying SLAs is WS-Agreement [13]. 

In supply chain systems, the distinction of IP and SP can be mapped to any subsystem of a firm (SP) serving a 
customer and one or more upstream tiers (IP). Inside these upstream tiers, contracts exist between supply chain 
participants and thus find a counterpart in SLAs. From the customer’s perspective, only the interface, thus the SP, is 
of relevance, whereas the SP is in charge of managing its supply chain (set of IPs). In this sense, the customer perceives 
the supply chain system as a black-box. The term Cloud comes very close to this metaphor, with users delegating the 
solution how to provide the requested service to a vague ‘Cloud’. 

C. Role of Service Level Agreements 

In a Cloud, SLAs are used primarily for managing the resource provision inside the Cloud. It has been criticized that 
Clouds do not guarantee certain service levels to the user [4]; this limitation needs to be lifted for supply chain systems, 
due to the importance of customers. Supply chain systems show a higher diversity of exchange relationships between 
IP, SP, and the customer than Clouds. In particular, these relationships are subject to power regimes [14], being the 
result of strategies in procurement respectively marketing/distribution. In case of buyer dominance, an SLA between 
SP and customer would affect or even determine also SLA parameters of upstream SLAs. In case of supplier 
dominance, a weak upstream SLA performance would severely limit the SLA performance of the entire supply chain 
system, and thus affect the SLA between SP and customer. In an extreme situation, the weakest SLA performance 
would become the SLA for the supply chain system. 

In Cloud computing, interdependencies between SLAs can be formally represented by the concept of QoS (Quality 
of Service) aggregation respectively disaggregation [15]. It provides mechanisms to determine respectively break-
down SLAs while considering the service system, e.g., sequences, parallel services, as well as different SLA 
parameters such as throughput, response time, reliability etc. 

D. Preliminary Summarization 

Table 1 summarizes the findings of analyzing supply chain systems from a Cloud Computing point of view. 
TABLE 1 

CLOUD PERSPECTIVE ON SUPPLY CHAIN SYSTEMS 

Element Cloud Computing Supply Chain Systems 
Resource type Hardware, machines, software applications Physical and human resources in supply chain systems 
Service type Infrastructure (IaaS), Platform (PaaS), and Software 

as a Service (SaaS) 
Supply Chain as a Service (SCaaS) 

Number and 
specificity of 
resources 

High number; specificity relatively low due to IT 
standardization 

High number; specificity low due to commoditization, but also 
high due to differentiation as strategic alternatives 

Reconfiguration Adding/removing resources results in high 
scalability; quick adaptation to demand volatility 
(e.g., within seconds) 

Physical, technical and organizational constraints limit and 
slow down adding/removing resources. 

Pay-per-use 
model 

Based on standard measurements such as 
processing time, data volume 

Supported by commoditization; most often based on actual 
load combined with performance metrics 

Infrastructure 
Provider (IP) 

Provides actual resources Represents upstream tier of any supply chain participant 

Service 
Provider (SP) 

Provides services to the final customer by 
contracting IPs 

Represents downstream tier, ultimately the one serving the 
final customer 

Service Level 
Agreements 

Exist between IP and SP only Exist for any contractual relationship in the supply chain 
system, including the final customer 

Most elements can be mapped to respective phenomenon. Literature yields evidence of properties such as 
commoditization and customer-orientation that support this perspective. However, the analysis also points to a greater 
diversity and richness of resources which has to be addressed in service description and composition; it increases the 
interoperability problem in the Cloud. Additionally, supply chain systems are made of autonomous entities which aim 
at different, overarching and conflicting goals. Acknowledging this characteristic, coordination mechanisms for 
supply chain services need to be carefully selected and designed. 

 

III. SUPPLY CHAIN SERVICE MODEL  
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This section proposes a formal model for describing supply chain services. Following the Cloud perspective, 
services are of utmost importance. When we use the term ‘service’ for supply chain systems, we refer to a software-
based representation, but not the actual real-world service. In technical terms, such services are Web services. A Web 
service is a software system supporting interoperable machine-to-machine interaction over an electronic network [16]. 
The service is formally described in an interface. Interaction takes place by exchanging messages between provider 
and requester. 

SCM practice and research has contributed a variety of modeling approaches for supply chains, ranging from 
quantitative decision models to semi-formal models supporting communication about and design of supply chains. 
These models do not address supply chain services explicitly, but include at least participants/actors as the most 
abstract type of resource and flows of goods. The latter can be used for arriving at services. We thus first define supply 
chain system and then service. 

Definition 2 (Supply Chain System): A supply chain system consists of nodes participating in producing, 
transforming and/or moving a good or service from suppliers to customers [5]. The interrelations between nodes are 
constituted by the possible flows of goods (or service; note: real-world services, not computing services), whereas 
nodes represent the storage and/or production of goods (or services) at locations. Supply chain system is defined as a 
directed graph SC=(N, F), where N is the set of all nodes and F is the set of all possible flows of goods with F 
NNGTM. Each f is a 4-tuple f=(nj, nk, g, tm), with flow of good g from nj to nk using the transportation mean tm 
TM. 

The following integrity constraints must hold: 
1. Let •n={m|(m, n)F}, the set of input nodes of n; then at least one nN exists with |•n|=0. Thus, at least one node 

has no incoming flows, i.e., it represents a real source of goods. 
2. Let n•={m|(n, m)F}, the set of output nodes of n; then at least one nN exists with |n•|=0. Thus, at least one 

node has no outgoing flows, i.e., it represents a final destination of goods. 
3. For all nN:|n•|+|•n|≥1; the graph SC is (weakly) connected. 

Definition 3 (Supply Chain Service): A supply chain service is a possible service flow from a supply chain service 
provider to a supply chain service consumer. The set of all such services form the supply chain service flow model, 
which is a directed graph SF=(A, S, M). A is the set of all actors. S is the set of all possible elementary service flows. 
Each s is a tuple s=(aj, ak), with flow s from aj to ak. M is a relation which maps each s to f in SC. Thus each service 
flow s can implement |Ms| flows of goods in L. 

The following integrity constraints must hold: 
1. Let •a={b|(b, a)S}, then at least one aA exists with |•a|=0, i.e., actor which is not a service consumer. 
2. Let a•={b|(a, b)S}, then at least one aA exists with |a•|=0, i.e., actor which is not a service provider. 
3. SF is (weakly) connected. 
4. For any s, if |Ms|≥2, then t:= |Ms| and there must exist a walk ws in SC with ws=(ni, ms,1, .., ms,t, nj) and ni,njN. 

If a service implements two or more flows, then these flows form a walk from node ni to node nj. If ws exists, then 
ps is the path for ws. 

The last integrity constraint allows for defining a service that realizes the flow of goods between nodes that are not 
directly linked; for instance, delivering goods from a manufacturer via a distribution center to retail stores. However, 
the problem is that this service would be provided by an actor without unfolding whether the actor implements all 
flows of goods by himself or subcontracts other actors/service providers. This problem can be solved by adopting the 
concept of service composition of Web service research [17] [18]. A service composition is a combination of services; 
it has two dimensions: hierarchy, i.e., part-of relationships between services, and sequence, i.e., logical order of 
services. 

Definition 4 (Composite Supply Chain Service): A composite supply chain service is a composition of two or 
more supply chain services in SF. It is defined as a 4-tuple cs=(aj, ak, CE, WF). CE denotes the composition elements. 
WF denotes the workflow, i.e., logical sequence of all ceCE. The composite service is offered by actor aj to actor ak. 

The following integrity constraints must hold: 
1. For each composite service csi: CE S* CS\csi. The composition may include elementary and composite services 

(without the respective csi). 
2. WF describes a directed graph (A’, S’, a1) with edges A’ A, arcs S’ S, and root a1. 

Composition is another mean for abstracting: it abstracts from its included services by providing a composite 
interface for accessing all the contained services. More precisely, we should say for accessing the contained services 
according to a given workflow. In SOC and Cloud Computing, a composite service and its interface is offered to users; 
in supply chain systems, users would be called final customers. Therefore, we employ the idea of composite services 
for providing an interface to final customers of a supply chain (e.g., individuals in case of consumer products). These 
customers search for and request a solution for their problem (e.g., delivery of certain products including location, 
quantity, time, terms of delivery, etc.). Fulfilling this request is only possible by composing a respective service, based 
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on both customer requirements (demand) and a set of available supply chain services (supply). These supply chain 
services are abstractions from an underlying supply chain system of real-world resources. Fig. 1 shows the 
interrelations between the three formalisms that we have introduced so far. The final customer is represented as af for 
whom a composite service is offered by acs. 

 

Fig. 1. SCaaS is a two-step abstraction from supply chain systems. 

 

IV. COORDINATION OF SUPPLY CHAIN SERVICES 

In this section, we extend the proposed supply chain service model by means for describing relationships between 
services. We first identify levels of supply chain service coordination, and then propose respective models. 

A. Coordination Issues 

A service-oriented representation of supply chain systems inherits the coordination problem of supply chains. 
Following the Cloud perspective, we propose adopting service composition from SOC. An essential requirement of 
composition is interoperability of services. Before coordination mechanisms can be designed, interoperable service 
descriptions have to be established. Interoperability in SOC is being addressed by the idea of Semantic Web Services 
which provide not only a syntactical but semantic description of service interfaces. These interfaces have a functional 
description including input and output data and other attributes required for capturing the conceptualization of the 
service. An example model for such interfaces is OWL-S (Semantic Markup for Web Services) which defines a 
standard set of attributes [19]. 

Arriving at a unified semantic service description is, however, only a first step: We also need to analyze the data 
flows between services. More specifically, we need to map output data to input data of services. These mappings can 
then be used for exchanging and transforming instance data during the actual interaction of two services. In summary, 
we can identify several levels of supply chain service coordination, as shown in Fig. 2. 

 
Fig. 2. Levels of supply chain service coordination. 

The four levels are interrelated as follows: 
1. On the top-level, we use the idea of composite services for enabling SCaaS. 
2. On the second level, these services are classified to become interoperable (see subsection B and C). 
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3. On the third level, services are connected by Semantic Links which define the relation between output of the 
preceding and input of the proceeding service (see subsection D). The concept of Semantic Links originates from 
Semantic Web services Fehler! Verweisquelle konnte nicht gefunden werden.. 

4. On the fourth level, service interaction description interfaces (SIDI) are used for transforming instance data, 
matching ambiguous data, and amending missing data interactively (see subsection E). 

B. Service Classification  

Definition 5: A classification scheme over a set of supply chain services SCS is defined as C=(P, p0 , V). P denotes 
the service types pP. V denotes inheritance relations in P. The root service type is denoted as p0 from which all other 
service types are derived. 

A candidate classification for supply chain services could be the Supply-Chain Operations Reference Model 
(SCOR) [21]. It provides a three-level classification of so called process types (e.g., source, make, deliver, plan, 
return), process categories (differentiated by customer specificity), and process elements (differentiated by logical 
sequence). 

By classification, the graph model of supply chain services is extended with object-oriented modeling. The service 
description is then a triple st=(a1, a2, p) with pP. An inheritance relation vVPP denotes a directed relation from 
a more specialized service type p1 to the more general service type p2, using single inheritance as basic concept and 
ensuring that each pP is part of the inheritance tree; hence p1P \ {p0}, p2P, p3P, p1p2, p2p3,  p1  v : v=(p1, p2) 
  v=(p1, p3). 

The concept of transitive inheritance and classification is used to determine, if a specific service type pu is allowed 
when a more general (or trivially the same) type pr is requested by the workflow. This service polymorphism allows 
to define a supply chain service framework (providing all general service types) whereas it is still possible for service 
providers to define their own specialized services within the framework. For example, the framework would specify 
a composite service of type pr (e.g., by referring to a SCOR process category). The service provider can then choose 
to internally implement a service of type pu which follows the defined service type pr but specializes and adds steps 
specific to the company (e.g., by adding SCOR process elements). The overall service instance of pu will still be 
compatible with the required pr for the supply chain service requested. 

To ensure this semantic compatibility, we define the super-type set, which includes all types in the inheritance-
based type hierarchy for a specific type pu. It is defined recursively as a set: 

Pu = { pu }, pu  P. 
Pu contains all more general service flow types for pu: 
Pu := Pu  {p  P |  v=(pr, p)  Vp, pr  Pu } 
 pr  Pu: pu can polymorphically substitute pr, i.e., pu can be used everywhere where a pr is requested (service 

polymorphism). The same concept applies to all types of elements e and their super-type set Eu(e) in our approach and 
will be applied to input, inner and output data of a service type as described in the following. We adopted this concept 
from [22] which provides a more general model for classifying processes based on object-orientation and its inherent 
polymorphism. 

C. Service Data 

The current classification of supply chain services is not sufficient for interoperability, because it neglects the 
existence of data being input or output of services and therefore transferred between services. This aspect is important 
especially for services with different stakeholders. We include this data into the classification by joining the two sets 
of service types (P) and data types (D) to the set of elements (E): E = P  D to include all active (P) and passive (D) 
elements. 

The flow connection graph G=(E, R) connects elements eE using relations rR  EE. 
R = F  T  (VVp) consists of all flows F, aggregations T and inheritance relations V. It connects services and data 

to form an integrated model with services connected and ordered via F, aggregated to composite services with T and 
typed by the inheritance relations V. 

The inheritance relations vV between elements eE in the model can connect each element only to one upper 
element and are therefore defined as follows: 
1. e1  E \ {p0}, e2  E, e3  E, e2  e3, e1  e2, v  V 
 e1  v : v=(e1, e2)   v=(e1, e3). 

2. Cyclic inheritance graphs are not allowed, i.e.,  
 e  E  v=(e1, e) e1  Eu(e). 

3. Each service flow type p can contain a set of subcomponents EpE using aggregation t: 
 ep  Ep  t  T: a=(ep, p). 
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Whereas elements are contained via aggregation, internal flow relations Fp of a service type p are defined as all flow 
relations that connect elements within a specific service type p creating a horizontal order and causality between the 
elements: 
 fp  Fp  p1, p2  Ep: fp = (p1, p2) 
Input elements ei of a service type p are data elements ei  Dp,i(Ep\P) that do not have an incoming internal flow 

connection but connect to internal components: 
 ei  Dp,i(Ep\P)  fp =(ep,1, ei)  Fp   fp =(ei, ep,2)  Fp, ep,1, ep,2  Ep. 
On the other hand, output elements eo of p are data elements that do not have an outgoing internal flow connection 
 eo  Dp,o(Ep\P)  fp =(eo, ep,1)  Fp   fp =(ep,2, eo)  Fp, ep,1, ep,2  Ep. 
This implies that internal data elements em have both incoming and outgoing internal flow relations: 
 em  Dp,m(Ep\P) ( fp =(em, ep,1)  Fp   fp =(ep,2, em)  Fp), ep,1, ep,2  Ep. 
In a consistent model, there are no data elements of p that have neither input nor output bindings to any internal 

element, meaning that an input or an output binding has to exist in every component ep. 
 ep  Dp(Ep\P) ( fp =(em, ep,1)  Fp   fp =(ep,2, em)  Fp), ep,1, ep,2  Ep. 
The distinction between input, inner, and output data extends the supply chain service model as shown in Fig. 3. 

 
Fig. 3. Data elements of supply chain service types. 

D. Service-to-Service Interface Using Semantic Links 

A supply chain system has to transfer goods from one supply chain tier to the next one. Accordingly, a service-
based representation has to assure correct transfer of data from one service to the next service. This service interface 
has to be considered when describing services and service compositions. It concerns the transfer of output data of the 
preceding service into input data of the proceeding service. 

We consider a composite service g0 as shown in Fig. 4. It consists of two subservices g1 and g2; the service is 
provided from a provider a1 to a final customer af . 

 
Fig. 4. Data flow in a composite service. 

During execution of g0, service g1 hands over data to service g2. Therefore, two service offerings may only be 
connected within a composite service, if g1 has the right output data elements matching the required input data 
elements of g2. For specifying these requirements, we define a service-to-service Interface using Semantic Links [19]. 
The Semantic Links describe the interconnection of services on the type level, not on the instance level, i.e., G0 is a 
composition of G1 and G2 with data flows G1.3G2.1 and G1.4G2.3 between G1 and G2. 

Following the object-oriented definition of data elements introduced before, every data input element can consume 
a data output element of the same type, or a more specialized type. This also implies that an output element may 
deliver the same or a specialized type that will be compatible. For instance, if a more general data element such as 
vehicle type ‘Truck’ is required, all output types can be used that contain the input type requested in their super-type 
set, e.g., ‘HeavyTruck’ or ‘ActrosTruck’. 
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E. From Data Mappings to Interactive Transformations 

Once supply chain service composition has taken place and instances st are being executed, the actual data flows 
have to be realized. To provide the necessary data for properly executing the next service in the workflow, all 
requirements defined by the Semantic Links have to be fulfilled. This is achieved by filling all input data elements 
with instance data. We need to consider three cases: 
1. The necessary data is available from a preceding service and can be identified and matched automatically: 

Matching and data transmission can either be accomplished type-based (unambiguous, i.e., types have to be 
different or must be matched manually – see 2) or relation-based (i.e., flow relations like G1.3G2.1 exist 
between input of the current service and output of the predecessor service). Relations and types in the meta-model 
define the handshake of Deliver and Source. 

2. The necessary data is available from a preceding service but matching is ambiguous: Because of similar types it 
has to be achieved either by predefinition (operator-based) or by ad-hoc selection by the executor. 
Matching is supported by providing a semantically matching subset of data elements for selection, which is 
created to support the user in selecting. Semi-automatic semantic matching is possible by typological correctness 
being checked by the system. 

3. The necessary data from a preceding service is missing: it has to be entered or selected ad-hoc by the executor. 
The set for selecting and editing is created using the type semantics and input types are controlled for match. 

F. Service Interaction Description Interface (SIDI) 

In the third case of not having necessary input data available as output data of a supply chain service being part of 
a composite service, it is necessary to provide runtime support for interactive and ad-hoc completion of necessary 
data. This interface is called Service Interaction Description Interface (SIDI). It represents the final model layer for 
supply chain coordination by connecting services (see Fig. 5). 

 
Fig. 5. SIDI connects supply chain services on the instance level. 

For example, when a1 hands over goods and (meta-)data to a2, the system has to offer a1 as well as a2 the possibility 
to select or enter information necessary to complete the handover process (e.g., use of mobile device by staff 
responsible for supply chain service delivery). 

When two supply chain services have been connected, a user interface enables stakeholders of the physical service 
process to realize not only the physical handover of goods but also to ensure correct supply chain service metadata 
being transferred. 

For example, a2 requires the names of all, i.e., including a1’s, drivers to be filled in the quality assurance form. The 
process of a2 therefore contains the specific input element for this information. As the information is not present and 
therefore not automatically filled in by semantic matching, it will be shown on a2’s display as missing data and on 
a1’s display as requested data. Both a1 and a2 are then asked to complete the missing information – a1 by selecting it 
from a list of “driver name” values or a2 by entering the name manually, if the value is not provided by a1. 

This way, the model can help identifying input data components and output data components and show them to the 
user – including their types and data payload. 

 

V. EVALUATION  

In this section, we provide a preliminary evaluation of our approach. We apply the proposal to a supply chain system 
of ground handling operations at airports. We describe the supply chain system, instantiate the proposed model 
elements, and report results of a prototype implementation. The purpose of the experiment is to demonstrate the 
feasibility and usefulness of the proposed models. 
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A. Supply Chain System 

We consider ground handling at airports: It involves (1) ground handling resources, (2) ground handling companies, 
and (3) airlines. Airlines have contracts with ground handling companies about handling inbound and outbound flights. 
Ground handling companies own resources for executing the handling process. There are resources which offer more 
than one operation (e.g., staff for loading and unloading). 

Whereas ground handling concerns physical items (e.g., aircrafts, baggage, passengers, etc.), it has to be noted that 
the handling process is being executed by several ground handling companies; each company provides handling 
operations (not goods). This fact makes it very simple to construct the supply chain system SC and supply chain 
service flow model SF. Actually, the latter’s relation M is a bijection. An example SF is shown in Fig. 6 (limited to 
one ground handling company and airline to reduce presentation complexity). 

 
Fig. 6. Supply chain service flow model SF with n resources and m services; 
h denotes handling company, and f denotes final customer. 

This at first sight static supply chain system is, however, affected by a highly volatile resource usage over time 
(peak-times in the morning and afternoon) and a very dynamic environment (flight delays due to internal and external 
plan deviations). There is a critical need for reacting to such changes in short-time, in particular for solving unforeseen 
bottlenecks, even during its execution. These characteristics motivate a ‘servitization’ which opens-up the static supply 
chain system and adopts service composition for problem solving. 

According to the Cloud perspective, composing is as follows: 
1. Airlines have fixed contracts with ground handling companies (SP). Each flight is regarded as a service request 

to the SP. 
2. This request can only be fulfilled by a composite service; this service includes all subservices required for 

handling aircrafts. 
3. The SP can use internal resources for delivering the subservices; each resource is being represented as a service. 

In addition, the SP can ask a third-party SP for external resources (outsourcing), thus for replacing or 
supplementing its internal resources, e.g., to cope with bottlenecks. In the former case, the SP would establish an 
SLA with its internal resource; in the latter case, with the third-party SP. 

In ground handling, the price for a service depends on expected consumption of resources and also required QoS 
level. The most important QoS parameter is execution time; for instance, turn-around time of aircraft: 30, 35, 40 
minutes etc. The “fast” services are potential bottleneck services, because they can be used better in peak-time 
situations to fulfill a critical task. However, accelerating such services by adding resources is hardly possible, unlike 
“slow” services which provide an implicit potential for acceleration (e.g., by increasing workflow of staff). In our 
simulation, we assume a fixed execution time per resource type for all service providers, who determine their bid price 
based on (marginally) different internal linear costs. 

Table 2 summarizes the Cloud perspective on the ground handling supply chain system. 
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TABLE 2 

CLOUD PERSPECTIVE ON GROUND HANDLING 

Element Ground Handling Supply Chain System 
Resource type Physical and human resources owned by ground handling companies. 
Service type Airlines consume ground handling as a composite service. 
Number and specificity of 
resources 

High, fixed number of resources; low specificity due to standardized service requirements (e.g., by IATA 
regulation). 

Reconfiguration Adding/removing human resources limited by shift plan; physical resources are bound to airport site. 
Pay-per-use model Airlines pay ground handling services based on mixed price models including consumption and QoS level. 
Infrastructure Provider (IP) Represents upstream tier of a ground handling company, i.e., its resources. 
Service Provider (SP) Represents ground handling company providing services to airlines being the final customers. 
Service Level Agreements Exist for contracts between (1) airline and ground handling company, (2) ground handling company and 

resource, and (3) ground handling company and third-party ground handling company. 

B. Instantiation of Model Elements 

Next, we instantiate the proposed model elements for the ground handling supply chain. Table 3 lists the main model 
elements. We limit the scope to a small snapshot of the entire ground handling process, which often includes more 
than 30 different service types and a respectively high number of relationships. 

TABLE 3 

INSTANTIATION OF MODEL ELEMENTS 

Model Element Instance Data 
Actors (A) Resources (IP), owned by ground handling companies (SP), airlines. 
Service flows (S) SP to airline (per flight); IP to SP (per service type of resource); SP to SP (per outsourcing job). 
Composite services (CS) For each flight, with WF dependent on direction (inbound/outbound). 
Service classification (C) Domain-specific classification, due to limitations of the SCOR model. 
Service types (P) Five elementary types, based on three resource types (bus: passenger transportation service; baggage cart: 

delivery to aircraft, pick-up at aircraft; loading staff: loading aircraft, unloading aircraft). 
Service data (D) Data elements: flight number, start time, end time, aircraft type, number of passengers, position, terminal. 

When adopting the SCOR model for classifying ground handling services, it appears that all services are of the 
same type: On the first SCOR level, they are delivery services (D); on the second level, they are of make-to-order 
(D2), because their intangibility prevents storage. Therefore, we apply a more specific domain classification, based 
on IATA [23]. We define the most generic type p0 and subtypes as shown in Fig. 7; the index refers to the service 
category of IATA. 

 

  
Fig. 7. Classification of Ground Handling Services. 

Composite services need to be distinguished for inbound and outbound flights. For an inbound flight, the composite 
service is csin=(a1, a2, CE, WF) with: 
1. a1 being a SP and a2 being an airline, 
2. CE containing elements of four service types, thus ce1CE:p(ce1)={p362}ce2CE:p(ce2)={p3641} 

ce3CE:p(ce3)={p3661}ce4CE:p(ce4)={p3642} 
3. WF=(A’, S’, a1) with all services s’ consumed by a1 and no service delivered by a1, and the following sequence: 

<p3641, p3661, p3642> (i.e., deliver empty baggage carts to aircraft, unload aircraft, pick-up and transfer to terminal) 
parallel to p362 (passenger transportation). 

For an outbound flight, the composite service is similar, with CE containing only three service types, and workflow 
sequence <p3641, p3661> (i.e., deliver baggage carts to aircraft, load aircraft) parallel to p362. 

Service data extends the service classification and description in ground handling. Some core data elements exist, 
which describe any type of ground handling service; these data elements are used by all actors for describing services. 
In the following, we consider as data elements: flight number (used as an identifier per day), start time (determining 
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earliest start time of the service), end time (determining latest end time of the service), aircraft type (determining 
equipment and handling procedure), number of passengers (determining number of resources required), position 
(determining place of service delivery), and terminal (determining source and/or destination). 

All these elements describe requirements on the composite service requested by an airline. We can use the concept 
of data types (D) forming a type hierarchy introduced before to determine allowed matches between a service request 
and service offers. For instance, a service request for handling an Airbus A340-400 can be fulfilled by any service 
offering which either exactly denotes this aircraft type or one of which ‘A340-400’ is a subtype, i.e., ‘A340’. The 
same is true for data element ‘position’ (e.g., subdivided into remote and nose-in) and ‘terminal’ (subdivided into 
geographical sites). 

A Semantic Link defines the data flow within a composite ground handling service. Let’s first study the workflow 
of outbound flights: There are two parallel flows for passengers and baggage. These flows are independent from each 
other, with the only precondition being the aircraft ready for handling, indicated by the earliest start time (which may 
differ for the two flows); hence, no data flow necessary. The sequence <p3641, p3661> requires a data flow, because the 
delivery service hands over the number of baggage items to the load service. Due to the sequence, another flow can 
be identified: The actual end time of p3641 (output) re-determines the earliest start time of p3661 (input) (assuming no 
overlap of the two services). 

With regard to inbound flights, the sequence <p3641, p3661, p3642> requires transferring the number of baggage items 
from the unloading service to the pick-up service, with two instances of the ‘actual end time’ to ‘earliest start time’ 
hand over. 

When the composite service has been delivered, it returns output data. This output data describes the service 
delivery; here, it returns the same input data elements with their actual values, e.g., actual start time, actual end time, 
and actual number of passengers. Depending on the data type and workflow, different data transformations take place. 
For instance, the number of passengers is the sum of all passengers transported, whereas the end time is the maximum 
of the latest end time of all contained service, and other data elements are not being affected at all (e.g., flight number). 
Such transformations can be categorized by adopting the well-known workflow patterns of van der Aalst et al. [24]. 

A SIDI enables actual data flows, if the output data does not correspond with the required input data, or is missing 
at all. In ground handling, such a situation is normally excluded by strict ground handling process definitions (for 
instance, often given by airlines and involving auditing processes before implementation). However, in cases of ad-
hoc outsourcing of services to third parties, this assumption is not longer valid, and mismatches of data can happen. 
Therefore, a SIDI can support end-users in correcting or filling in data by means of user interfaces on mobile devices. 
Since the number of potential data elements is low and all elements concern service characteristics which can be 
observed by the service staff and are part of their professional work, the requirements on end-user support are also 
rather low. 

C. Prototype Implementation 

We use the proposed models for solving a specific coordination problem in the supply chain system introduced 
before. For this purpose, we implemented a software prototype based on the technology of SOC and Cloud Computing. 
Next, we report briefly about the implementation and results. 

First, we define the coordination problem: The ultimate goal of the supply chain system is to effectively handle all 
flights (i.e., SP fulfills all SLAs with airlines) while efficiently using the available resources (i.e., SP minimizes 
incurred costs). 

In general, a SP can implement a variety of approaches for determining the optimal resources to be used, e.g., by 
planning algorithms. However, SOC aims at loosely coupled services with no central entity for planning service 
delivery in a hierarchical manner. The service-oriented approach transforms passive resources into active services, 
which also follow and implement certain strategies (e.g., uniform resource usage per day, offsets between proceedings 
jobs). Therefore, we need a coordination mechanism that pays attention to potentially conflicting strategies of both 
SPs and IPs. A candidate group of coordination mechanisms is market-based coordination (i.e., exchanges, auctions) 
which uses the price for matching demand and supply. Due to the 1-to-many relationship of demand and supply, we 
choose reverse auctions for allocating resources. 

The individual strategies and bidding behavior of supply chain actors are represented by cooperative software 
agents; thus software agents negotiate about the delivery of supply chain services. Cooperative software agents and 
multiagent systems are suitable technology for solving coordination problems in and between enterprises [25]. These 
negotiations take place in a service-oriented environment, in particular, within the SOC technology stack for Web 
services and using a Grid middleware. Table 4 gives an overview of the service-oriented technologies and 
specifications used. 
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TABLE 4 

SERVICE-ORIENTED TECHNOLOGIES USED 

Area Usage in Prototype 
Service Description WSDL is the language for technically describing supply chain services as Web services.  
Service Discovery All services registered in a Web service registry, which can be queried by each SP for services. 
Service Matching Matching between request and offer is delegated to the reverse auction protocol. 
Service Contracts SA-SLA is the language for semantically describing SLAs in the supply chain system. 
Service Execution Execution of supply chain services is simulated by given execution time per service. 
Service Communication SOAP is the protocol for all communication between SPs and IPs. 
Service Middleware Globus Toolkit 4 [26] is used for developing and executing the software-based services. 

The prototype system was used for conducting several experiments: Real-world operational data from an airport 
company was retrieved and loaded into the system; it included flight plan data, ground handling workflow definition, 
and a set of workflow rules (e.g., related to aircraft types, airlines, etc.). We then setup an experimental ground 
handling supply chain, consisting of three SPs, 58 resources of three different types, providing the five service types, 
and 15 airlines. The flight plan represented a so called peak-time with expected shortage of resources causing 
bottlenecks and thus the need for adapting the pre-planned service delivery (82 flight movements over a period of 
three and a half hours). 

The coordination mechanism is as follows: Starting with a comprehensive initial plan for the whole day (retrieved 
from an airport planning system), events triggered by aircraft movements occur; for instance, notification about an 
incoming flight. The system checks each event for potential effect on the plan. In case of a conflict, e.g., delay of 
service execution not possible, because the resource is already assigned to another flight, the three-step allocation 
process starts. First, internal resources are tried by starting a reverse auction. If this fails, the system outsources the 
task to a third party by an interorganizational reverse auction. The auctions are combinatorial, thus may include sets 
of interrelated services for the same flight. Service providers can then submit bids on single or combined services. The 
sequence of services in the right order and at the right time is given in an abstract workflow which is public to all 
actors. 

Due to the market-based approach, the system does not give priorities to flights (customers) in advance, but 
delegates this function to SPs and their IPs. Since each SP aims at fulfilling its SLAs with airlines, the bidding strategy 
of their IPs is maximizing revenue and avoiding penalty, both as defined in airline SLAs and propagated to the 
upstream providers. 

The experience made was that the service-based system successfully can handle deviations, as they occur regularly 
in ground handling, and that the coordination mechanism provides a mean for (1) reallocating internal resources, (2) 
outsourcing jobs to third party SPs, and (3) considering SLAs that exist with the final customer (airlines). A detailed 
description of the prototype system, the experiment, and its results can be found in [27]. While the results must be 
largely attributed to the coordination mechanism, which is out of scope of the present work, it gives an indication of 
contributions that can be expected from adopting the service-oriented paradigm and its technologies: We found out 
that real-world supply chain services can effectively be transformed into Web services. If this step is made, then the 
infrastructure of SOC and Cloud gets available for supply chain systems as well. In the prototype system, we reused 
and extended a service middleware which is originally and foremost designed for coordinating service delivery in high 
performance computing as the traditional domain of Grids. 

The implementation and experiments show several potential outcomes of transforming supply chain operations into 
Web services: one is increased accessibility of supply chain services via standardized electronic interfaces. In our 
case, a uniform access to available resources of third parties, in particular of small and medium-sized companies, at 
airports is hardly possible and requires relatively high integration efforts. This benefit was identified by end-users. 
Closely related is the principle of pooling shared resources; by such, the solution space for solving short-term 
allocation problems can be increased. With regard to performance measurement, the results indicate a slightly better 
usage of some resources, thus reducing idle times. However, other resources are used less; more experiments are 
required to test the validity of this effect. Another outcome is due to outsourcing of services: the system handles 
bottlenecks effectively by generating a valid plan in any tested case, whereas the conventional planning system stops 
and requires manual plan repair by qualified staff. The contribution from Cloud Computing to this observation is the 
technical infrastructure allowing such outsourcing. 

 

VI. RELATED WORK  

Supply chain systems have been subject to much research in Computer Science, Information Systems, and most 
recently Service Science. Of particular interest are works on adopting ideas, concepts, models, and methods from 
software technology which follows the service paradigm, i.e., Grid Computing, Service-oriented Computing, and 
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Cloud Computing. One can identify two major research streams: The first stream is adopting the service paradigm for 
supply chain management software. This approach aims at providing the functionality of SCM software by an 
integrated set of (web) services, e.g., [28]. The second stream is adopting the service paradigm for representing supply 
chain systems – or parts of it – by (web) services. In this sense, the electronic representations become the subject of 
Web service coordination and its respective body of knowledge. The work presented belongs to the latter stream. 

Literature supports that software-based services contribute to a supply chain system’s performance. Kumar et al. 
study SOC adoption by 388 US firms [29], without distinguishing service types. The ability to dynamically 
outsourcing tasks as Web services is emphasized by Iyer et al. which explore the strategic implications on supply 
chain systems being transformed into dynamic business networks [30]. 

Blau et al. propose the concept of Service Value Network (SVN) [31]; it represents a network of business entities 
that provide business value through market-based composition of complex services from a pool of standardized service 
modules. The similarity to our approach is the conceptualization of service and composition; the formalism used is 
based on statecharts. The objective of this research is different from ours and hence its perspective of market 
mechanism design, i.e., game and auction theory. In addition, it concerns service industry, but not supply chain 
systems. 

Gujo proposes a combinatorial multi-attribute auction model for allocating logistics services in a network of 
logistics service providers [32]. Transportation jobs are conceptualized as service requests, for which providers can 
submit combinatorial bids representing service bundles, i.e., for each tour. While the coordination mechanism is 
relevant to our work, the services are independent from a computing infrastructure and not motivated by service-
orientation. Another market mechanism is used by Bossenbroeck et al. [33], who propose option contracts to reducing 
uncertainty of resource availability and volatility of resource prices; though this approach is confined to computational 
resources. 

In recent years, there have been efforts within Grid Computing to extend its coverage to business applications and 
also supply chain systems. For instance, the European initiative BEinGRID conducted several business experiments 
(BE) [34]: BE17 concerns optimization in retail supply chains and thus provides supply chain functionality as services; 
BE22 concerns food supply chains and adopts the Grid’s concept of Virtual Organization (VO) for representing a 
short-term configuration of supply chain participants [35]. This approach is situated in the Grid technology software 
stack and adopts SLAs for supply chain contracts. Details about its service representation and potential compositions 
have not been published though. 

SLAs are of high importance in service-based supply chains. Müller et al. study the expressivity of SLA languages 
with regard to temporal dependencies existing between logistics services and extend the WS-Agreement specification 
to allow for validity periods of SLA terms [36]. In prior work, we proposed a SLA-based negotiation protocol for 
service supply chains [37]; the objective is to prevent over-commitments and over-purchasing by the Service Provider. 
The present work adopts its basic supply chain service definition and extends it with regard to composition, 
classification, and data flows. 

To the best of our knowledge, supply chain systems have not yet been analyzed from the perspective of Cloud 
Computing. Following the first research stream, Cloud is bound to providing computational services of supply chain 
software functionality such as planning, but not operations. 

 

VII. CONCLUSIONS  

Coordinating resources and processes is a severe problem in supply chain systems. In this paper, we proposed 
‘Supply Chain as a Service’ as a service-oriented approach to its solution. The rationale is as follows: Cloud 
Computing is in the process of providing a viable, universal middleware for delivering services to end users. Making 
this infrastructure accessible to supply chain systems by means of ‘servitizing’ is beneficial to supply chain 
coordination, because of loosely coupled services and respective middleware standards. 

We adopted the idea of Cloud Computing for service representation and service composition in supply chain 
systems. The resulting models allow for representing operations in supply chain systems as interconnected services 
and describing compositions of such services. A first evaluation in a supply chain of airport ground handling 
operations shows evidence that the proposal provides a core set of constructs for describing supply chain systems and 
– on top that – coordinating service delivery to the final customer. 

The proposal has limitations. First, by adopting the basic idea of Cloud Computing, the proposal also inherits some 
of Cloud’s deficits. For instance, Cloud Computing is still in an early stage, with few matured concepts and also 
remaining confusion about its paradigm and contributions. Second, the proposal is focused on service description, 
their interrelations and interoperability, but does not explore the problem of composing services, thus finding optimal 
compositions; though it provides a model basis for the creation of service composition approaches. Third, the 
evaluation is limited to a specific use case and thus lacks evidence of general suitability and validity of the proposed 
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models. Fourth, the proposal is aimed at the conceptual level of service description, but not integrated into the SOC 
technology stack of specification languages, such as WSDL, OWL-S, WS-Agreement, SA-SLA, etc. 

Therefore, future work is aimed at extending the coverage of the proposed Cloud adoption; the current work is 
regarded as providing a framework for it. In particular, research is needed on (1) adopting formal languages from SOC 
for specifying SLAs in supply chain systems, (2) selecting and adopting service composition algorithms suitable for 
supply chain services, (3) integrating supply chain service description with models originating from Semantic Web 
Services, and (4) testing the approach in more realistic and comprehensive scenarios of supply chains and providing 
respective quantitative evaluation. 
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